helgesverre / milvus
PHP Client for the Milvus Rest API
Installs: 2 853
Dependents: 0
Suggesters: 0
Security: 0
Stars: 13
Watchers: 2
Forks: 6
Open Issues: 5
Requires
- php: ^8.2
- saloonphp/laravel-plugin: ^v3.0.0
- saloonphp/saloon: ^3.0
- spatie/laravel-data: ^3.0|^4.0
- spatie/laravel-package-tools: ^1.14.0
Requires (Dev)
- larastan/larastan: ^2.0.1
- laravel/pint: ^1.0
- nunomaduro/collision: ^7.8
- orchestra/testbench: ^8.8
- pestphp/pest: ^2.20
- pestphp/pest-plugin-arch: ^2.0
- pestphp/pest-plugin-laravel: ^2.0
- phpstan/extension-installer: ^1.1
- phpstan/phpstan-deprecation-rules: ^1.0
- phpstan/phpstan-phpunit: ^1.0
README
Milvus.io PHP API Client
Milvus is an open-source vector database that is highly flexible, reliable, and blazing fast. It supports adding, deleting, updating, and near real-time search of vectors on a trillion-byte scale.
This package is an API Client for the Milvus v2.3.3 Restful API, and is built on the Saloon package.
Documentation about the Restful API is available on the Milvus website, and an OpenAPI spec is available here.
Versions
(*) But is mostly compatible, the only difference (that I can see) between them is the new Vector Upsert endpoint, and
new parameters (params.range_filter
and params.radius
) in the Vector Search endpoint.
Installation
You can install the package via composer:
composer require helgesverre/milvus
You can publish the config file with:
php artisan vendor:publish --tag="milvus-config"
This is the contents of the published config/milvus.php
file:
return [ 'token' => env('MILVUS_TOKEN'), 'username' => env('MILVUS_USERNAME'), 'password' => env('MILVUS_PASSWORD'), 'host' => env('MILVUS_HOST', 'localhost'), 'port' => env('MILVUS_PORT', '19530'), ];
Usage
With Laravel
For Laravel users, you can use the Milvus
facade to interact with the Milvus API:
use HelgeSverre\Milvus\Facades\Milvus; // NOTE: dbName is optional and defaults to 'default', this is only relevant if you have multiple databases. // List all collections in the 'default' database Milvus::collections()->list( dbName: 'default' ); // Create a new collection named 'documents' in the 'default' database with a specified dimension Milvus::collections()->create( collectionName: 'documents', dimension: 128, dbname: 'default', ); // Describe the structure and properties of the 'documents' collection in the 'default' database Milvus::collections()->describe( collectionName: 'documents', dbname: 'default', ); // Drop or delete the 'documents' collection from the 'default' database Milvus::collections()->drop( collectionName: 'documents', dbname: 'default', ); // Insert a new vector into the 'documents' collection with additional fields like title and link // Note "vector" is a reserved field name and must be used for the vector data Milvus::vector()->insert( collectionName: 'documents', data: [ 'vector' => [0.1, 0.2, 0.3 /* etc... */], "title" => "Document name here", "link" => "https://example.com/document-name-here", ] ); // Search for similar vectors in the 'documents' collection using a provided vector Milvus::vector()->search( collectionName: 'documents', vector: [0.1, 0.2, 0.3 /* etc... */], ); // Delete a vector from the 'documents' collection using its ID Milvus::vector()->delete( id: '123129471497', collectionName: 'documents' ); // Query the 'documents' collection for specific documents using a filter condition and select specific output fields Milvus::vector()->query( collectionName: 'documents', filter: "id in [443300716234671427, 443300716234671426]", outputFields: ["id", "title", "link"], ); // Retrieve a specific vector from the 'documents' collection using its ID Milvus::vector()->get( id: '123129471497', collectionName: 'documents' ); // Update or insert a vector in the 'documents' collection. If the ID exists, it's updated; if not, a new entry is created Milvus::vector()->upsert( collectionName: 'documents', data: [ 'id' => 123129471497, 'vector' => [0.1, 0.2, 0.3 /* etc... */], "title" => "Document name here", "link" => "https://example.com/document-name-here", ] );
Without Laravel
If you are not using laravel, you will have to create a new instance of the Milvus class and provide a token or user/pass, the host and the port.
<?php // use HelgeSverre\Milvus\Facades\Milvus; use HelgeSverre\Milvus\Milvus; $milvus = new Milvus( token: "your-token", host: "localhost", port: "19530" ); // Import the Milvus facade for easier access to Milvus functions // NOTE: dbName is optional and defaults to 'default', this is only relevant if you have multiple databases. // List all collections in the 'default' database $milvus->collections()->list( dbName: 'default' ); // Create a new collection named 'documents' in the 'default' database with a specified dimension $milvus->collections()->create( collectionName: 'documents', dimension: 128, dbName: 'default', ); // Describe the structure and properties of the 'documents' collection in the 'default' database $milvus->collections()->describe( collectionName: 'documents', dbName: 'default', ); // Drop or delete the 'documents' collection from the 'default' database $milvus->collections()->drop( collectionName: 'documents', dbName: 'default', ); // Insert a new vector into the 'documents' collection with additional fields like title and link // Note "vector" is a reserved field name and must be used for the vector data $milvus->vector()->insert( collectionName: 'documents', data: [ 'vector' => [0.1, 0.2, 0.3 /* etc... */], "title" => "Document name here", "link" => "https://example.com/document-name-here", ] ); // Search for similar vectors in the 'documents' collection using a provided vector $milvus->vector()->search( collectionName: 'documents', vector: [0.1, 0.2, 0.3 /* etc... */], ); // Delete a vector from the 'documents' collection using its ID $milvus->vector()->delete( id: '123129471497', collectionName: 'documents' ); // Query the 'documents' collection for specific documents using a filter condition and select specific output fields $milvus->vector()->query( collectionName: 'documents', filter: "id in [443300716234671427, 443300716234671426]", outputFields: ["id", "title", "link"], ); // Retrieve a specific vector from the 'documents' collection using its ID $milvus->vector()->get( id: '123129471497', collectionName: 'documents' ); // Update or insert a vector in the 'documents' collection. If the ID exists, it's updated; if not, a new entry is created $milvus->vector()->upsert( collectionName: 'documents', data: [ 'id' => 123129471497, 'vector' => [0.1, 0.2, 0.3 /* etc... */], "title" => "Document name here", "link" => "https://example.com/document-name-here", ] );
Using with Zilliz Cloud
If you are using the hosted version of Milvus, you will need to specify the following host and port along with your API token:
use HelgeSverre\Milvus\Milvus; $milvus = new Milvus( token: "db_randomstringhere:passwordhere", host: 'https://in03-somerandomstring.api.gcp-us-west1.zillizcloud.com', port: '443' );
Example: Semantic Search with Milvus and OpenAI Embeddings
This example demonstrates how to perform a semantic search in Milvus using embeddings generated from OpenAI.
Prepare Your Data
First, create an array of data you wish to index. In this example, we'll use blog posts with titles, summaries, and tags.
$blogPosts = [ [ 'title' => 'Exploring Laravel', 'summary' => 'A deep dive into Laravel frameworks...', 'tags' => ['PHP', 'Laravel', 'Web Development'] ], [ 'title' => 'Exploring Laravel', 'summary' => 'A deep dive into Laravel frameworks, exploring its features and benefits for modern web development.', 'tags' => ['PHP', 'Laravel', 'Web Development'] ], [ 'title' => 'Introduction to React', 'summary' => 'Understanding the basics of React and how it revolutionizes frontend development.', 'tags' => ['JavaScript', 'React', 'Frontend'] ], [ 'title' => 'Getting Started with Vue.js', 'summary' => 'A beginner’s guide to building interactive web interfaces with Vue.js.', 'tags' => ['JavaScript', 'Vue.js', 'Frontend'] ], ];
Generate Embeddings
Use OpenAI's embeddings API to convert the summaries of your blog posts into vector embeddings.
$summaries = array_column($blogPosts, 'summary'); $embeddingsResponse = OpenAI::client('sk-your-openai-api-key') ->embeddings() ->create([ 'model' => 'text-embedding-ada-002', 'input' => $summaries, ]); foreach ($embeddingsResponse->embeddings as $embedding) { $blogPosts[$embedding->index]['vector'] = $embedding->embedding; }
Create Milvus collection
Create a collection in Milvus to store your blog post embeddings, note that the dimension of the embeddings must match
the dimension of the embeddings generated by OpenAI (1536
if you are using the text-embedding-ada-002
model).
$milvus = new Milvus( token: "your-token", host: "localhost", port: "19530" ); $milvus->collections()->create( collectionName: 'blog_posts', dimension: 1536, );
Insert into Milvus
Insert these embeddings, along with other blog post data, into your Milvus collection.
$insertResponse = $milvus->vector()->insert('blog_posts', $blogPosts);
Creating a Search Vector with OpenAI
Generate a search vector for your query, akin to how you processed the blog posts.
$searchVectorResponse = OpenAI::client('sk-your-openai-api-key') ->embeddings() ->create([ 'model' => 'text-embedding-ada-002', 'input' => 'laravel framework', ]); $searchEmbedding = $searchVectorResponse->embeddings[0]->embedding;
Searching using the Embedding in Milvus
Use the Milvus client to perform a search with the generated embedding.
$searchResponse = $milvus->vector()->search( collectionName: 'blog_posts', vector: $searchEmbedding, limit: 3, outputFields: ['title', 'summary', 'tags'] ); // Output the search results foreach ($searchResponse as $result) { echo "Title: " . $result['title'] . "\n"; echo "Summary: " . $result['summary'] . "\n"; echo "Tags: " . implode(', ', $result['tags']) . "\n\n"; }
Running Milvus in Docker
To quickly get started with Milvus, you can run it in Docker, by using the following command
# Download the docker-compose.yml file wget https://github.com/milvus-io/milvus/releases/download/v2.3.3/milvus-standalone-docker-compose.yml -O docker-compose.yml # Start Milvus docker compose up -d
A healthcheck endpoint will now be available on http://localhost:9091/healthz
, and the Milvus API will be available
on http://localhost:19530
.
To stop Milvus, run docker compose down
, to wipe all the data, run docker compose down -v
.
For more details Installing Milvus Standalone with Docker Compose
For production workloads, consider checking out Zilliz.com, which are the developers behind Milvus and provides a hosted version of Milvus in the Cloud ☁️.
Testing
cp .env.example .env ## Start a local Milvus instance, it takes awhile to boot up docker compose up -d composer test composer analyse src
License
The MIT License (MIT). Please see License File for more information.
Disclaimer
"Milvus®" and the Milvus logo are registered trademarks of the Linux Foundation (LF Projects, LLC). This package is not affiliated with, endorsed by, or sponsored by the Linux Foundation. It's developed independently and uses the "Milvus" name under fair use, solely for identification. All trademarks and registered trademarks, including "Milvus®", are the property of their respective owners. "Milvus®" is a registered trademark of the Linux Foundation.