floridaman963 / openai
Just for a test,the origin is from Openai-php/client
Requires
- php: ^8.1.0
- php-http/discovery: ^1.15.3
- php-http/multipart-stream-builder: ^1.2.0
- psr/http-client: ^1.0.2
- psr/http-client-implementation: ^1.0.1
- psr/http-factory-implementation: *
- psr/http-message: ^1.1.0
Requires (Dev)
- guzzlehttp/guzzle: ^7.5
- guzzlehttp/psr7: ^2.5.0
- laravel/pint: ^1.9.0
- nunomaduro/collision: ^7.5.2
- pestphp/pest: ^2.5.3
- pestphp/pest-plugin-arch: ^2.1.2
- pestphp/pest-plugin-mock: ^2.0.0
- phpstan/phpstan: ^1.10.14
- rector/rector: ^0.14.8
- symfony/var-dumper: ^6.2.8
This package is not auto-updated.
Last update: 2024-12-20 10:46:33 UTC
README
NOTICE Just for a test,the origin is from Openai-php/client
Table of Contents
Get Started
Requires PHP 8.1+
First, install OpenAI via the Composer package manager:
composer require floridaman963/openai
Ensure that the php-http/discovery
composer plugin is allowed to run or install a client manually if your project does not already have a PSR-18 client integrated.
composer require guzzlehttp/guzzle
Then, interact with OpenAI's API:
$yourApiKey = getenv('YOUR_API_KEY'); $client = OpenAI::client($yourApiKey); $result = $client->completions()->create([ 'model' => 'text-davinci-003', 'prompt' => 'PHP is', ]); echo $result['choices'][0]['text']; // an open-source, widely-used, server-side scripting language.
If necessary, it is possible to configure and create a separate client.
$yourApiKey = getenv('YOUR_API_KEY'); $client = OpenAI::factory() ->withApiKey($yourApiKey) ->withOrganization('your-organization') // default: null ->withBaseUri('openai.example.com/v1') // default: api.openai.com/v1 ->withHttpClient($client = new \GuzzleHttp\Client([])) // default: HTTP client found using PSR-18 HTTP Client Discovery ->withHttpHeader('X-My-Header', 'foo') ->withQueryParam('my-param', 'bar') ->withStreamHandler(fn (RequestInterface $request): ResponseInterface => $client->send($request, [ 'stream' => true // Allows to provide a custom stream handler for the http client. ])) ->make();
Usage
Models
Resource
list
Lists the currently available models, and provides basic information about each one such as the owner and availability.
$response = $client->models()->list(); $response->object; // 'list' foreach ($response->data as $result) { $result->id; // 'text-davinci-003' $result->object; // 'model' // ... } $response->toArray(); // ['object' => 'list', 'data' => [...]]
retrieve
Retrieves a model instance, providing basic information about the model such as the owner and permissioning.
$response = $client->models()->retrieve('text-davinci-003'); $response->id; // 'text-davinci-003' $response->object; // 'model' $response->created; // 1642018370 $response->ownedBy; // 'openai' $response->root; // 'text-davinci-003' $response->parent; // null foreach ($response->permission as $result) { $result->id; // 'modelperm-7E53j9OtnMZggjqlwMxW4QG7' $result->object; // 'model_permission' $result->created; // 1664307523 $result->allowCreateEngine; // false $result->allowSampling; // true $result->allowLogprobs; // true $result->allowSearchIndices; // false $result->allowView; // true $result->allowFineTuning; // false $result->organization; // '*' $result->group; // null $result->isBlocking; // false } $response->toArray(); // ['id' => 'text-davinci-003', ...]
delete
Delete a fine-tuned model.
$response = $client->models()->delete('curie:ft-acmeco-2021-03-03-21-44-20'); $response->id; // 'curie:ft-acmeco-2021-03-03-21-44-20' $response->object; // 'model' $response->deleted; // true $response->toArray(); // ['id' => 'curie:ft-acmeco-2021-03-03-21-44-20', ...]
Completions
Resource
create
Creates a completion for the provided prompt and parameters.
$response = $client->completions()->create([ 'model' => 'text-davinci-003', 'prompt' => 'Say this is a test', 'max_tokens' => 6, 'temperature' => 0 ]); $response->id; // 'cmpl-uqkvlQyYK7bGYrRHQ0eXlWi7' $response->object; // 'text_completion' $response->created; // 1589478378 $response->model; // 'text-davinci-003' foreach ($response->choices as $result) { $result->text; // '\n\nThis is a test' $result->index; // 0 $result->logprobs; // null $result->finishReason; // 'length' or null } $response->usage->promptTokens; // 5, $response->usage->completionTokens; // 6, $response->usage->totalTokens; // 11 $response->toArray(); // ['id' => 'cmpl-uqkvlQyYK7bGYrRHQ0eXlWi7', ...]
create streamed
Creates a streamed completion for the provided prompt and parameters.
$stream = $client->completions()->createStreamed([ 'model' => 'text-davinci-003', 'prompt' => 'Hi', 'max_tokens' => 10, ]); foreach($stream as $response){ $response->choices[0]->text; } // 1. iteration => 'I' // 2. iteration => ' am' // 3. iteration => ' very' // 4. iteration => ' excited' // ...
Chat
Resource
create
Creates a completion for the chat message.
$response = $client->chat()->create([ 'model' => 'gpt-3.5-turbo', 'messages' => [ ['role' => 'user', 'content' => 'Hello!'], ], ]); $response->id; // 'chatcmpl-6pMyfj1HF4QXnfvjtfzvufZSQq6Eq' $response->object; // 'chat.completion' $response->created; // 1677701073 $response->model; // 'gpt-3.5-turbo-0301' foreach ($response->choices as $result) { $result->index; // 0 $result->message->role; // 'assistant' $result->message->content; // '\n\nHello there! How can I assist you today?' $result->finishReason; // 'stop' } $response->usage->promptTokens; // 9, $response->usage->completionTokens; // 12, $response->usage->totalTokens; // 21 $response->toArray(); // ['id' => 'chatcmpl-6pMyfj1HF4QXnfvjtfzvufZSQq6Eq', ...]
created streamed
Creates a streamed completion for the chat message.
$stream = $client->chat()->createStreamed([ 'model' => 'gpt-4', 'messages' => [ ['role' => 'user', 'content' => 'Hello!'], ], ]); foreach($stream as $response){ $response->choices[0]->toArray(); } // 1. iteration => ['index' => 0, 'delta' => ['role' => 'assistant'], 'finish_reason' => null] // 2. iteration => ['index' => 0, 'delta' => ['content' => 'Hello'], 'finish_reason' => null] // 3. iteration => ['index' => 0, 'delta' => ['content' => '!'], 'finish_reason' => null] // ...
Audio
Resource
transcribe
Transcribes audio into the input language.
$response = $client->audio()->transcribe([ 'model' => 'whisper-1', 'file' => fopen('audio.mp3', 'r'), 'response_format' => 'verbose_json', ]); $response->task; // 'transcribe' $response->language; // 'english' $response->duration; // 2.95 $response->text; // 'Hello, how are you?' foreach ($response->segments as $segment) { $segment->index; // 0 $segment->seek; // 0 $segment->start; // 0.0 $segment->end; // 4.0 $segment->text; // 'Hello, how are you?' $segment->tokens; // [50364, 2425, 11, 577, 366, 291, 30, 50564] $segment->temperature; // 0.0 $segment->avgLogprob; // -0.45045216878255206 $segment->compressionRatio; // 0.7037037037037037 $segment->noSpeechProb; // 0.1076972484588623 $segment->transient; // false } $response->toArray(); // ['task' => 'transcribe', ...]
translate
Translates audio into English.
$response = $client->audio()->translate([ 'model' => 'whisper-1', 'file' => fopen('german.mp3', 'r'), 'response_format' => 'verbose_json', ]); $response->task; // 'translate' $response->language; // 'english' $response->duration; // 2.95 $response->text; // 'Hello, how are you?' foreach ($response->segments as $segment) { $segment->index; // 0 $segment->seek; // 0 $segment->start; // 0.0 $segment->end; // 4.0 $segment->text; // 'Hello, how are you?' $segment->tokens; // [50364, 2425, 11, 577, 366, 291, 30, 50564] $segment->temperature; // 0.0 $segment->avgLogprob; // -0.45045216878255206 $segment->compressionRatio; // 0.7037037037037037 $segment->noSpeechProb; // 0.1076972484588623 $segment->transient; // false } $response->toArray(); // ['task' => 'translate', ...]
Edits
Resource
create
Creates a new edit for the provided input, instruction, and parameters.
$response = $client->edits()->create([ 'model' => 'text-davinci-edit-001', 'input' => 'What day of the wek is it?', 'instruction' => 'Fix the spelling mistakes', ]); $response->object; // 'edit' $response->created; // 1589478378 foreach ($response->choices as $result) { $result->text; // 'What day of the week is it?' $result->index; // 0 } $response->usage->promptTokens; // 25, $response->usage->completionTokens; // 32, $response->usage->totalTokens; // 57 $response->toArray(); // ['object' => 'edit', ...]
Embeddings
Resource
create
Creates an embedding vector representing the input text.
$response = $client->embeddings()->create([ 'model' => 'text-similarity-babbage-001', 'input' => 'The food was delicious and the waiter...', ]); $response->object; // 'list' foreach ($response->embeddings as $embedding) { $embedding->object; // 'embedding' $embedding->embedding; // [0.018990106880664825, -0.0073809814639389515, ...] $embedding->index; // 0 } $response->usage->promptTokens; // 8, $response->usage->totalTokens; // 8 $response->toArray(); // ['data' => [...], ...]
Files
Resource
list
Returns a list of files that belong to the user's organization.
$response = $client->files()->list(); $response->object; // 'list' foreach ($response->data as $result) { $result->id; // 'file-XjGxS3KTG0uNmNOK362iJua3' $result->object; // 'file' // ... } $response->toArray(); // ['object' => 'list', 'data' => [...]]
delete
Delete a file.
$response = $client->files()->delete($file); $response->id; // 'file-XjGxS3KTG0uNmNOK362iJua3' $response->object; // 'file' $response->deleted; // true $response->toArray(); // ['id' => 'file-XjGxS3KTG0uNmNOK362iJua3', ...]
retrieve
Returns information about a specific file.
$response = $client->files()->retrieve('file-XjGxS3KTG0uNmNOK362iJua3'); $response->id; // 'file-XjGxS3KTG0uNmNOK362iJua3' $response->object; // 'file' $response->bytes; // 140 $response->createdAt; // 1613779657 $response->filename; // 'mydata.jsonl' $response->purpose; // 'fine-tune' $response->status; // 'succeeded' $response->status_details; // null $response->toArray(); // ['id' => 'file-XjGxS3KTG0uNmNOK362iJua3', ...]
upload
Upload a file that contains document(s) to be used across various endpoints/features.
$response = $client->files()->upload([ 'purpose' => 'fine-tune', 'file' => fopen('my-file.jsonl', 'r'), ]); $response->id; // 'file-XjGxS3KTG0uNmNOK362iJua3' $response->object; // 'file' $response->bytes; // 140 $response->createdAt; // 1613779657 $response->filename; // 'mydata.jsonl' $response->purpose; // 'fine-tune' $response->status; // 'succeeded' $response->status_details; // null $response->toArray(); // ['id' => 'file-XjGxS3KTG0uNmNOK362iJua3', ...]
download
Returns the contents of the specified file.
$client->files()->download($file); // '{"prompt": "<prompt text>", ...'
FineTunes
Resource
create
Creates a job that fine-tunes a specified model from a given dataset.
$response = $client->fineTunes()->create([ 'training_file' => 'file-ajSREls59WBbvgSzJSVWxMCB', 'validation_file' => 'file-XjSREls59WBbvgSzJSVWxMCa', 'model' => 'curie', 'n_epochs' => 4, 'batch_size' => null, 'learning_rate_multiplier' => null, 'prompt_loss_weight' => 0.01, 'compute_classification_metrics' => false, 'classification_n_classes' => null, 'classification_positive_class' => null, 'classification_betas' => [], 'suffix' => null, ]); $response->id; // 'ft-AF1WoRqd3aJAHsqc9NY7iL8F' $response->object; // 'fine-tune' // ... $response->toArray(); // ['id' => 'ft-AF1WoRqd3aJAHsqc9NY7iL8F', ...]
list
List your organization's fine-tuning jobs.
$response = $client->fineTunes()->list(); $response->object; // 'list' foreach ($response->data as $result) { $result->id; // 'ft-AF1WoRqd3aJAHsqc9NY7iL8F' $result->object; // 'fine-tune' // ... } $response->toArray(); // ['object' => 'list', 'data' => [...]]
retrieve
Gets info about the fine-tune job.
$response = $client->fineTunes()->retrieve('ft-AF1WoRqd3aJAHsqc9NY7iL8F'); $response->id; // 'ft-AF1WoRqd3aJAHsqc9NY7iL8F' $response->object; // 'fine-tune' $response->model; // 'curie' $response->createdAt; // 1614807352 $response->fineTunedModel; // 'curie => ft-acmeco-2021-03-03-21-44-20' $response->organizationId; // 'org-jwe45798ASN82s' $response->resultFiles; // [ $response->status; // 'succeeded' $response->validationFiles; // [ $response->trainingFiles; // [ $response->updatedAt; // 1614807865 foreach ($response->events as $result) { $result->object; // 'fine-tune-event' $result->createdAt; // 1614807352 $result->level; // 'info' $result->message; // 'Job enqueued. Waiting for jobs ahead to complete. Queue number => 0.' } $response->hyperparams->batchSize; // 4 $response->hyperparams->learningRateMultiplier; // 0.1 $response->hyperparams->nEpochs; // 4 $response->hyperparams->promptLossWeight; // 0.1 foreach ($response->resultFiles as $result) { $result->id; // 'file-XjGxS3KTG0uNmNOK362iJua3' $result->object; // 'file' $result->bytes; // 140 $result->createdAt; // 1613779657 $result->filename; // 'mydata.jsonl' $result->purpose; // 'fine-tune' $result->status; // 'succeeded' $result->status_details; // null } foreach ($response->validationFiles as $result) { $result->id; // 'file-XjGxS3KTG0uNmNOK362iJua3' // ... } foreach ($response->trainingFiles as $result) { $result->id; // 'file-XjGxS3KTG0uNmNOK362iJua3' // ... } $response->toArray(); // ['id' => 'ft-AF1WoRqd3aJAHsqc9NY7iL8F', ...]
cancel
Immediately cancel a fine-tune job.
$response = $client->fineTunes()->cancel('ft-AF1WoRqd3aJAHsqc9NY7iL8F'); $response->id; // 'ft-AF1WoRqd3aJAHsqc9NY7iL8F' $response->object; // 'fine-tune' // ... $response->status; // 'cancelled' // ... $response->toArray(); // ['id' => 'ft-AF1WoRqd3aJAHsqc9NY7iL8F', ...]
list events
Get fine-grained status updates for a fine-tune job.
$response = $client->fineTunes()->listEvents('ft-AF1WoRqd3aJAHsqc9NY7iL8F'); $response->object; // 'list' foreach ($response->data as $result) { $result->object; // 'fine-tune-event' $result->createdAt; // 1614807352 // ... } $response->toArray(); // ['object' => 'list', 'data' => [...]]
list events streamed
Get streamed fine-grained status updates for a fine-tune job.
$stream = $client->fineTunes()->listEventsStreamed('ft-y3OpNlc8B5qBVGCCVsLZsDST'); foreach($stream as $response){ $response->message; } // 1. iteration => 'Created fine-tune: ft-y3OpNlc8B5qBVGCCVsLZsDST' // 2. iteration => 'Fine-tune costs $0.00' // ... // xx. iteration => 'Uploaded result file: file-ajLKUCMsFPrT633zqwr0eI4l' // xx. iteration => 'Fine-tune succeeded'
Moderations
Resource
create
Classifies if text violates OpenAI's Content Policy.
$response = $client->moderations()->create([ 'model' => 'text-moderation-latest', 'input' => 'I want to k*** them.', ]); $response->id; // modr-5xOyuS $response->model; // text-moderation-003 foreach ($response->results as $result) { $result->flagged; // true foreach ($result->categories as $category) { $category->category->value; // 'violence' $category->violated; // true $category->score; // 0.97431367635727 } } $response->toArray(); // ['id' => 'modr-5xOyuS', ...]
Images
Resource
create
Creates an image given a prompt.
$response = $client->images()->create([ 'prompt' => 'A cute baby sea otter', 'n' => 1, 'size' => '256x256', 'response_format' => 'url', ]); $response->created; // 1589478378 foreach ($response->data as $data) { $data->url; // 'https://oaidalleapiprodscus.blob.core.windows.net/private/...' $data->b64_json; // null } $response->toArray(); // ['created' => 1589478378, data => ['url' => 'https://oaidalleapiprodscus...', ...]]
edit
Creates an edited or extended image given an original image and a prompt.
$response = $client->images()->edit([ 'image' => fopen('image_edit_original.png', 'r'), 'mask' => fopen('image_edit_mask.png', 'r'), 'prompt' => 'A sunlit indoor lounge area with a pool containing a flamingo', 'n' => 1, 'size' => '256x256', 'response_format' => 'url', ]); $response->created; // 1589478378 foreach ($response->data as $data) { $data->url; // 'https://oaidalleapiprodscus.blob.core.windows.net/private/...' $data->b64_json; // null } $response->toArray(); // ['created' => 1589478378, data => ['url' => 'https://oaidalleapiprodscus...', ...]]
variation
Creates a variation of a given image.
$response = $client->images()->variation([ 'image' => fopen('image_edit_original.png', 'r'), 'n' => 1, 'size' => '256x256', 'response_format' => 'url', ]); $response->created; // 1589478378 foreach ($response->data as $data) { $data->url; // 'https://oaidalleapiprodscus.blob.core.windows.net/private/...' $data->b64_json; // null } $response->toArray(); // ['created' => 1589478378, data => ['url' => 'https://oaidalleapiprodscus...', ...]]
Testing
The package provides a fake implementation of the OpenAI\Client
class that allows you to fake the API responses.
To test your code ensure you swap the OpenAI\Client
class with the OpenAI\Testing\ClientFake
class in your test case.
The fake responses are returned in the order they are provided while creating the fake client.
All responses are having a fake()
method that allows you to easily create a response object by only providing the parameters relevant for your test case.
use OpenAI\Testing\ClientFake; use OpenAI\Responses\Completions\CreateResponse; $client = new ClientFake([ CreateResponse::fake([ 'choices' => [ [ 'text' => 'awesome!', ], ], ]), ]); $completion = $client->completions()->create([ 'model' => 'text-davinci-003', 'prompt' => 'PHP is ', ]); expect($completion['choices'][0]['text'])->toBe('awesome!');
In case of a streamed response you can optionally provide a resource holding the fake response data.
use OpenAI\Testing\ClientFake; use OpenAI\Responses\Chat\CreateStreamedResponse; $client = new ClientFake([ CreateStreamedResponse::fake(fopen('file.txt', 'r');); ]); $completion = $client->chat()->createStreamed([ 'model' => 'gpt-3.5-turbo', 'messages' => [ ['role' => 'user', 'content' => 'Hello!'], ], ]); expect($response->getIterator()->current()) ->id->toBe('chatcmpl-6yo21W6LVo8Tw2yBf7aGf2g17IeIl');
After the requests have been sent there are various methods to ensure that the expected requests were sent:
// assert completion create request was sent $client->assertSent(Completions::class, function (string $method, array $parameters): bool { return $method === 'create' && $parameters['model'] === 'text-davinci-003' && $parameters['prompt'] === 'PHP is '; }); // or $client->completions()->assertSent(function (string $method, array $parameters): bool { // ... }); // assert 2 completion create requests were sent $client->assertSent(Completions::class, 2); // assert no completion create requests were sent $client->assertNotSent(Completions::class); // or $client->completions()->assertNotSent(); // assert no requests were sent $client->assertNothingSent();
To write tests expecting the API request to fail you can provide a Throwable
object as the response.
$client = new ClientFake([ new \OpenAI\Exceptions\ErrorException([ 'message' => 'The model `gpt-1` does not exist', 'type' => 'invalid_request_error', 'code' => null, ]) ]); // the `ErrorException` will be thrown $completion = $client->completions()->create([ 'model' => 'text-davinci-003', 'prompt' => 'PHP is ', ]);
Services
Azure
In order to use the Azure OpenAI Service, it is necessary to construct the client manually using the factory.
$client = OpenAI::factory() ->withBaseUri('{your-resource-name}.openai.azure.com/openai/deployments/{deployment-id}') ->withHttpHeader('api-key', '{your-api-key}') ->withQueryParam('api-version', '{version}') ->make();
To use Azure, you must deploy a model, identified by the {deployment-id}, which is already incorporated into the API calls. As a result, you do not have to provide the model during the calls since it is included in the BaseUri
.
Therefore, a basic sample completion call would be:
$result = $client->completions()->create([ 'prompt' => 'PHP is' ]);
OpenAI PHP is an open-sourced software licensed under the MIT license.