zwell / qdrant
PHP Client for Qdrant
1.0.5
2024-09-02 09:11 UTC
Requires
- php: ^7.4
- guzzlehttp/guzzle: ^6.3
- guzzlehttp/psr7: ^1.9.0
- psr/http-client: ^1.0
- psr/http-message: ^1.0|^2.0
- psr/log: ^1.0|^2.0|^3.0
- webmozart/assert: ^1.11
Requires (Dev)
- hkulekci/cohere: dev-main
- mockery/mockery: ^1.5
- openai-php/client: ^0.3.5
- phpunit/php-code-coverage: ^10.1@dev
- phpunit/phpunit: ^10.0
README
This library is a PHP Client for Qdrant.
Qdrant is a vector similarity engine & vector database. It deploys as an API service providing search for the nearest high-dimensional vectors. With Qdrant, embeddings or neural network encoders can be turned into full-fledged applications for matching, searching, recommending, and much more!
Installation
You can install the client in your PHP project using composer:
composer require zwell/qdrant
An example to create a collection :
use Qdrant\Endpoints\Collections; use Qdrant\Http\GuzzleClient; use Qdrant\Models\Request\CreateCollection; use Qdrant\Models\Request\VectorParams; include __DIR__ . "/../vendor/autoload.php"; include_once 'config.php'; $config = new \Qdrant\Config(QDRANT_HOST); $config->setApiKey(QDRANT_API_KEY); $client = new Qdrant(new GuzzleClient($config)); $createCollection = new CreateCollection(); $createCollection->addVector(new VectorParams(1024, VectorParams::DISTANCE_COSINE), 'image'); $response = $client->collections('images')->create($createCollection);
So now, we can insert a point :
use Qdrant\Models\PointsStruct; use Qdrant\Models\PointStruct; use Qdrant\Models\VectorStruct; $points = new PointsStruct(); $points->addPoint( new PointStruct( (int) $imageId, new VectorStruct($data['embeddings'][0], 'image'), [ 'id' => 1, 'meta' => 'Meta data' ] ) ); $client->collections('images')->points()->upsert($points);
While upsert data, if you want to wait for upsert to actually happen, you can use query paramaters:
$client->collections('images')->points()->upsert($points, ['wait' => 'true']);
You can check for more parameters : https://qdrant.github.io/qdrant/redoc/index.html#tag/points/operation/upsert_points
Search with a filter :
use Qdrant\Models\Filter\Condition\MatchString; use Qdrant\Models\Filter\Filter; use Qdrant\Models\Request\SearchRequest; use Qdrant\Models\VectorStruct; $searchRequest = (new SearchRequest(new VectorStruct($embedding, 'elev_pitch'))) ->setFilter( (new Filter())->addMust( new MatchString('name', 'Palm') ) ) ->setLimit(10) ->setParams([ 'hnsw_ef' => 128, 'exact' => false, ]) ->setWithPayload(true); $response = $client->collections('images')->points()->search($searchRequest);