A library for interacting with ChatGPT and Claude AI
Requires
- php: ^8.3
- ext-fileinfo: *
- ext-libxml: *
- ext-simplexml: *
- guzzlehttp/guzzle: ^7.0
Requires (Dev)
- friendsofphp/php-cs-fixer: *
- phpstan/phpstan: ^2.1
- phpstan/phpstan-phpunit: ^2.0
- phpunit/phpunit: ^12.0
- roave/security-advisories: dev-master
- squizlabs/php_codesniffer: *
README
A library for interacting with Anthropic / Claude AI and OpenAI / ChatGPT.
PHP 8.3 and above is supported.
Usage
Install via Composer:
composer require elliotjreed/ai
There are two classes, one for Claude AI, and one for ChatGPT. Each extent the abstract Prompt
class and are designed to be interoperable.
$claude = new ElliotJReed\AI\Claude\Prompt('API KEY', 'claude-3-5-haiku-latest'); $chatGPT = new ElliotJReed\AI\ChatGPT\Prompt('API KEY', 'gpt-4o-mini');
Each take the first argument in the constructor as your API key, and the second argument as the model you want to use.
You can optionally provide a Guzzle HTTP client:
$claude = new ElliotJReed\AI\Claude\Prompt('API KEY', 'claude-3-5-haiku-latest', new \GuzzleHttp\Client()); $chatGPT = new ElliotJReed\AI\ChatGPT\Prompt('API KEY', 'gpt-4o-mini', new \GuzzleHttp\Client());
This could be useful where you are using a framework such as Symfony, you could autowire the service and reference a configured Guzzle client.
Here's an example of a Symfony integration in the services.yaml
file:
guzzle.client.ai: class: GuzzleHttp\Client arguments: - { timeout: 10, headers: { 'User-Agent': 'My Symfony Project' } } ElliotJReed\AI\Claude\Prompt: class: ElliotJReed\AI\Claude\Prompt arguments: $apiKey: '%env(string:CLAUDE_API_KEY)%' $model: 'claude-3-5-haiku-latest' $client: '@guzzle.client.ai' ElliotJReed\AI\ChatGPT\Prompt: class: ElliotJReed\AI\ChatGPT\Prompt arguments: $apiKey: '%env(string:CHATGPT_API_KEY)%' $model: 'gpt-4o-mini' $client: '@guzzle.client.ai'
The following two sections show examples for both Anthropic / Claude and OpenAI / ChatGPT - they take the same request and are functionally the same. The same examples are shown for both for simplicity.
Anthropic Claude AI
Text prompts
For text-based prompts you can either set a plain text prompt, or use the included StructuredPrompt
to use a light prompting framework and format in an LLM-friendly way.
For a really simple request and response:
<?php require_once __DIR__ . '/vendor/autoload.php'; $prompt = new ElliotJReed\AI\Claude\Prompt('API KEY', 'claude-3-5-haiku-latest'); $request = (new ElliotJReed\AI\Entity\Request()) ->setTextPrompt('Which programming language will outlive humanity?'); $response = $prompt->send($request); echo 'Used input tokens: ' . $response->getUsage()->getInputTokens() . \PHP_EOL; echo 'Used output tokens: ' . $response->getUsage()->getOutputTokens() . \PHP_EOL; echo 'Response from AI: ' . $response->getContent() . \PHP_EOL;
System (developer or role) prompt
You can also include a system prompt as either a string or a StructuredPrompt
. This takes priority in terms of instructions over the user prompts. For example, you could let the LLM know what role it is taking on.
<?php require_once __DIR__ . '/vendor/autoload.php'; $prompt = new ElliotJReed\AI\Claude\Prompt('API KEY', 'claude-3-5-haiku-latest'); $request = (new ElliotJReed\AI\Entity\Request()) ->setSystemPrompt('You are using expert software development knowledge to help software developers of varying levels of experience') ->setTextPrompt('Which programming language will outlive humanity?'); $response = $prompt->send($request); echo 'Used input tokens: ' . $response->getUsage()->getInputTokens() . \PHP_EOL; echo 'Used output tokens: ' . $response->getUsage()->getOutputTokens() . \PHP_EOL; echo 'Response from AI: ' . $response->getContent() . \PHP_EOL;
Structured prompt
You can provide a StructuredPrompt
too. A StructuredPrompt
wraps context, instructions, user input, data, and examples in XML tags before sending the request to the AI API. This can help the LLMs understand a bit better, and can be particularly useful when dealing with potentially untrusted user input (eg. from a web form or chat bot implementation)/
Setting the temperature (between 0 and 1, basically how "creative" you want the AI to be), and the maximum tokens to use (recommended if the user input is from a indirect source, for example an online chatbot):
<?php require_once __DIR__ . '/vendor/autoload.php'; $prompt = new ElliotJReed\AI\Claude\Prompt('API KEY', 'claude-3-5-haiku-latest'); $request = (new ElliotJReed\AI\Entity\Request()) ->setSystemPrompt('You are responding to customer queries from a web form.') ->setSystemPrompt((new ElliotJReed\AI\Entity\StructuredPrompt()) ->setContext('The customer is querying via a form on a e-commerce website based in the United Kingdom.') ->setInstructions('Respond using the data from the FAQs in a friendly and accurate way using British English.') ->setData('FAQs. Q: Do you offer next day deliver. A: Yes we do, however we do not offer same day delivery.') ->setExamples(['Hello! Unfortunately we are not open on Bank Holidays.'])) ->setTextPrompt((new ElliotJReed\AI\Entity\StructuredPrompt()) ->setContext('The current date and time is: ' . (new DateTime())->format('Y-m-d H:i:s')) ->setUserInput('Can you deliver today at my address?')) ->setMaximumTokens(300); $response = $prompt->send($request); echo 'Used input tokens: ' . $response->getUsage()->getInputTokens() . \PHP_EOL; echo 'Used output tokens: ' . $response->getUsage()->getOutputTokens() . \PHP_EOL; echo 'Response from AI: ' . $response->getContent() . \PHP_EOL;
History
If you want to keep a conversation going (like you would on ChatGPT or Claude's website or app), you can pass through the history from the previous response to a new request:
<?php require_once __DIR__ . '/vendor/autoload.php'; $prompt = new ElliotJReed\AI\Claude\Prompt('API KEY', 'claude-3-5-haiku-latest'); $request = (new ElliotJReed\AI\Entity\Request()) ->setSystemPrompt('You are responding as a philosopher and ethicist who favours utilitarian methodology when answering ethical questions.') ->setTextPrompt('Should we all be vegan?') ->setTemperature(0.8) ->setMaximumTokens(600); $response = $prompt->send($request); echo 'Used input tokens: ' . $response->getUsage()->getInputTokens() . \PHP_EOL; echo 'Used output tokens: ' . $response->getUsage()->getOutputTokens() . \PHP_EOL; echo 'Response from AI: ' . $response->getContent() . \PHP_EOL; $secondRequest = (new ElliotJReed\AI\Entity\Request()) ->setSystemPrompt('You are responding as a philosopher and ethicist who favours utilitarian methodology when answering ethical questions.') ->setTextPrompt('Elaborate on your response, providing 3 bullet points for arguing in favour of veganism, and 3 bullet points arguing against.') ->setTemperature(0.8) ->setMaximumTokens(600) ->setHistory($response->getHistory()); $secondResponse = $prompt->send($secondRequest); echo 'Used input tokens: ' . $secondResponse->getUsage()->getInputTokens() . \PHP_EOL; echo 'Used output tokens: ' . $secondResponse->getUsage()->getOutputTokens() . \PHP_EOL; echo 'Response from AI: ' . $secondResponse->getContent() . \PHP_EOL;
Images
You can send image data, by either providing URL or a base64 encoded image file.
<?php require_once __DIR__ . '/vendor/autoload.php'; $prompt = new ElliotJReed\AI\Claude\Prompt('API KEY', 'claude-3-5-haiku-latest'); $request = (new ElliotJReed\AI\Entity\Request()) ->setSystemPrompt('You are using expert flower knowledge to identify individual flowers and foliage in bouquets of flowers when the user uploads one or more photographs.') ->setImages([ 'https://media.bunches.co.uk/products/586x586/ffreir-category.jpg', base64_encode(file_get_contents(__DIR__ . '/bouquet.webp')) ]) ->setMaximumTokens(300); $response = $prompt->send($request); echo 'Used input tokens: ' . $response->getUsage()->getInputTokens() . \PHP_EOL; echo 'Used output tokens: ' . $response->getUsage()->getOutputTokens() . \PHP_EOL; echo 'Response from AI: ' . $response->getContent() . \PHP_EOL;
As with the text prompts you can also retain the history between requests.
<?php require_once __DIR__ . '/vendor/autoload.php'; $prompt = new ElliotJReed\AI\Claude\Prompt('API KEY', 'claude-3-5-haiku-latest'); $request = (new ElliotJReed\AI\Entity\Request()) ->setSystemPrompt('You are using expert flower knowledge to identify individual flowers and foliage in bouquets of flowers when the use uploads one or more photographs. Identify just the contents in bullet points.') ->setImages([ 'https://media.bunches.co.uk/products/586x586/ffreir-category.jpg', base64_encode(file_get_contents(__DIR__ . '/bouquet.webp')) ]) ->setMaximumTokens(300); $response = $prompt->send($request); echo 'Used input tokens: ' . $response->getUsage()->getInputTokens() . \PHP_EOL; echo 'Used output tokens: ' . $response->getUsage()->getOutputTokens() . \PHP_EOL; echo 'Response from AI: ' . $response->getContent() . \PHP_EOL; $secondRequest = (new ElliotJReed\AI\Entity\Request()) ->setSystemPrompt('You are using expert flower knowledge to identify individual flowers and foliage in bouquets of flowers when the use uploads one or more photographs. Identify just the contents in bullet points.') ->setTextPrompt('List only the types of flower or foliage with no additional description.') ->setMaximumTokens(300) ->setHistory($response->getHistory()); $secondResponse = $prompt->send($secondRequest); echo 'Used input tokens: ' . $secondResponse->getUsage()->getInputTokens() . \PHP_EOL; echo 'Used output tokens: ' . $secondResponse->getUsage()->getOutputTokens() . \PHP_EOL; echo 'Response from AI: ' . $secondResponse->getContent() . \PHP_EOL;
OpenAI ChatGPT
Text prompts
For text-based prompts you can either set a plain text prompt, or use the included StructuredPrompt
to use a light prompting framework and format in an LLM-friendly way.
For a really simple request and response:
<?php require_once __DIR__ . '/vendor/autoload.php'; $prompt = new ElliotJReed\AI\ChatGPT\Prompt('API KEY', 'gpt-4o-mini'); $request = (new ElliotJReed\AI\Entity\Request()) ->setTextPrompt('Which programming language will outlive humanity?'); $response = $prompt->send($request); echo 'Used input tokens: ' . $response->getUsage()->getInputTokens() . \PHP_EOL; echo 'Used output tokens: ' . $response->getUsage()->getOutputTokens() . \PHP_EOL; echo 'Response from AI: ' . $response->getContent() . \PHP_EOL;
System (developer or role) prompt
You can also include a system prompt as either a string or a StructuredPrompt
. This takes priority in terms of instructions over the user prompts. For example, you could let the LLM know what role it is taking on.
<?php require_once __DIR__ . '/vendor/autoload.php'; $prompt = new ElliotJReed\AI\ChatGPT\Prompt('API KEY', 'gpt-4o-mini'); $request = (new ElliotJReed\AI\Entity\Request()) ->setSystemPrompt('You are using expert software development knowledge to help software developers of varying levels of experience') ->setTextPrompt('Which programming language will outlive humanity?'); $response = $prompt->send($request); echo 'Used input tokens: ' . $response->getUsage()->getInputTokens() . \PHP_EOL; echo 'Used output tokens: ' . $response->getUsage()->getOutputTokens() . \PHP_EOL; echo 'Response from AI: ' . $response->getContent() . \PHP_EOL;
Structured prompt
You can provide a StructuredPrompt
too. A StructuredPrompt
wraps context, instructions, user input, data, and examples in XML tags before sending the request to the AI API. This can help the LLMs understand a bit better, and can be particularly useful when dealing with potentially untrusted user input (eg. from a web form or chat bot implementation)/
Setting the temperature (between 0 and 1, basically how "creative" you want the AI to be), and the maximum tokens to use (recommended if the user input is from a indirect source, for example an online chatbot):
<?php require_once __DIR__ . '/vendor/autoload.php'; $prompt = new ElliotJReed\AI\ChatGPT\Prompt('API KEY', 'gpt-4o-mini'); $request = (new ElliotJReed\AI\Entity\Request()) ->setSystemPrompt('You are responding to customer queries from a web form.') ->setSystemPrompt((new ElliotJReed\AI\Entity\StructuredPrompt()) ->setContext('The customer is querying via a form on a e-commerce website based in the United Kingdom.') ->setInstructions('Respond using the data from the FAQs in a friendly and accurate way using British English.') ->setData('FAQs. Q: Do you offer next day deliver. A: Yes we do, however we do not offer same day delivery.') ->setExamples(['Hello! Unfortunately we are not open on Bank Holidays.'])) ->setTextPrompt((new ElliotJReed\AI\Entity\StructuredPrompt()) ->setContext('The current date and time is: ' . (new DateTime())->format('Y-m-d H:i:s')) ->setUserInput('Can you deliver today at my address?')) ->setMaximumTokens(300); $response = $prompt->send($request); echo 'Used input tokens: ' . $response->getUsage()->getInputTokens() . \PHP_EOL; echo 'Used output tokens: ' . $response->getUsage()->getOutputTokens() . \PHP_EOL; echo 'Response from AI: ' . $response->getContent() . \PHP_EOL;
History
If you want to keep a conversation going (like you would on ChatGPT or Claude's website or app), you can pass through the history from the previous response to a new request:
<?php require_once __DIR__ . '/vendor/autoload.php'; $prompt = new ElliotJReed\AI\ChatGPT\Prompt('API KEY', 'gpt-4o-mini'); $request = (new ElliotJReed\AI\Entity\Request()) ->setSystemPrompt('You are responding as a philosopher and ethicist who favours utilitarian methodology when answering ethical questions.') ->setTextPrompt('Should we all be vegan?') ->setTemperature(0.8) ->setMaximumTokens(600); $response = $prompt->send($request); echo 'Used input tokens: ' . $response->getUsage()->getInputTokens() . \PHP_EOL; echo 'Used output tokens: ' . $response->getUsage()->getOutputTokens() . \PHP_EOL; echo 'Response from AI: ' . $response->getContent() . \PHP_EOL; $secondRequest = (new ElliotJReed\AI\Entity\Request()) ->setSystemPrompt('You are responding as a philosopher and ethicist who favours utilitarian methodology when answering ethical questions.') ->setTextPrompt('Elaborate on your response, providing 3 bullet points for arguing in favour of veganism, and 3 bullet points arguing against.') ->setTemperature(0.8) ->setMaximumTokens(600) ->setHistory($response->getHistory()); $secondResponse = $prompt->send($secondRequest); echo 'Used input tokens: ' . $secondResponse->getUsage()->getInputTokens() . \PHP_EOL; echo 'Used output tokens: ' . $secondResponse->getUsage()->getOutputTokens() . \PHP_EOL; echo 'Response from AI: ' . $secondResponse->getContent() . \PHP_EOL;
Images
You can send image data, by either providing URL or a base64 encoded image file.
<?php require_once __DIR__ . '/vendor/autoload.php'; $prompt = new ElliotJReed\AI\Claude\Prompt('API KEY', 'claude-3-5-haiku-latest'); $request = (new ElliotJReed\AI\Entity\Request()) ->setSystemPrompt('You are using expert flower knowledge to identify individual flowers and foliage in bouquets of flowers when the user uploads one or more photographs.') ->setImages([ 'https://media.bunches.co.uk/products/586x586/ffreir-category.jpg', base64_encode(file_get_contents(__DIR__ . '/bouquet.webp')) ]) ->setMaximumTokens(300); $response = $prompt->send($request); echo 'Used input tokens: ' . $response->getUsage()->getInputTokens() . \PHP_EOL; echo 'Used output tokens: ' . $response->getUsage()->getOutputTokens() . \PHP_EOL; echo 'Response from AI: ' . $response->getContent() . \PHP_EOL;
As with the text prompts you can also retain the history between requests.
<?php require_once __DIR__ . '/vendor/autoload.php'; $prompt = new ElliotJReed\AI\Claude\Prompt('API KEY', 'claude-3-5-haiku-latest'); $request = (new ElliotJReed\AI\Entity\Request()) ->setSystemPrompt('You are using expert flower knowledge to identify individual flowers and foliage in bouquets of flowers when the use uploads one or more photographs. Identify just the contents in bullet points.') ->setImages([ 'https://media.bunches.co.uk/products/586x586/ffreir-category.jpg', base64_encode(file_get_contents(__DIR__ . '/bouquet.webp')) ]) ->setMaximumTokens(300); $response = $prompt->send($request); echo 'Used input tokens: ' . $response->getUsage()->getInputTokens() . \PHP_EOL; echo 'Used output tokens: ' . $response->getUsage()->getOutputTokens() . \PHP_EOL; echo 'Response from AI: ' . $response->getContent() . \PHP_EOL; $secondRequest = (new ElliotJReed\AI\Entity\Request()) ->setSystemPrompt('You are using expert flower knowledge to identify individual flowers and foliage in bouquets of flowers when the use uploads one or more photographs. Identify just the contents in bullet points.') ->setTextPrompt('List only the types of flower or foliage with no additional description.') ->setMaximumTokens(300) ->setHistory($response->getHistory()); $secondResponse = $prompt->send($secondRequest); echo 'Used input tokens: ' . $secondResponse->getUsage()->getInputTokens() . \PHP_EOL; echo 'Used output tokens: ' . $secondResponse->getUsage()->getOutputTokens() . \PHP_EOL; echo 'Response from AI: ' . $secondResponse->getContent() . \PHP_EOL;
Error handling
All exceptions extend the base AIException
.
Testing
Simple mock
For convenience, there are two mock classes which can be used for simple unit tests, once for Claude (ElliotJReed\AI\Double\ClaudePromptMock
) and one for ChatGPT(ElliotJReed\AI\Double\ChatGPTPromptMock
).
One for each is provided as the underlying API requests differ, and the History
between the two providers differ, even if the Request
and usage is the same.
<?php require_once __DIR__ . '/vendor/autoload.php'; $prompt = new ElliotJReed\AI\Double\ClaudePromptMock('API KEY', 'test-model'); $prompt->response = 'Mocked response here!' $request = (new ElliotJReed\AI\Entity\Request()) ->setSystemPrompt('You are using expert software development knowledge to help software developers of varying levels of experience') ->setTextPrompt('Which programming language will outlive humanity?'); $response = $prompt->send($request); echo 'Used input tokens: ' . $response->getUsage()->getInputTokens() . \PHP_EOL; echo 'Used output tokens: ' . $response->getUsage()->getOutputTokens() . \PHP_EOL; echo 'Response from AI: ' . $response->getContent() . \PHP_EOL; // Output: 'Mocked response here!' print_r($response->getHistory());
<?php require_once __DIR__ . '/vendor/autoload.php'; $prompt = new ElliotJReed\AI\Double\ChatGPTPromptMock('API KEY', 'test-model'); $prompt->response = 'Mocked response here!' $request = (new ElliotJReed\AI\Entity\Request()) ->setSystemPrompt('You are using expert software development knowledge to help software developers of varying levels of experience') ->setTextPrompt('Which programming language will outlive humanity?'); $response = $prompt->send($request); echo 'Used input tokens: ' . $response->getUsage()->getInputTokens() . \PHP_EOL; echo 'Used output tokens: ' . $response->getUsage()->getOutputTokens() . \PHP_EOL; echo 'Response from AI: ' . $response->getContent() . \PHP_EOL; // Output: 'Mocked response here!' print_r($response->getHistory());
Advanced
For more complex requirements, you could use the Claude or ChatGPT Prompt
classes directly and mock the raw response using Guzzle.
Refer to the Anthropic and OpenAI API documentation for raw response examples. Or view the source code of this library.
<?php require_once __DIR__ . '/vendor/autoload.php'; $mock = new GuzzleHttp\Handler\MockHandler([new GuzzleHttp\Psr7\Response(200, [], '{ "id": "msg_01Bblahblahnaughtygoose", "type": "message", "role": "assistant", "model": "claude-3-5-haiku-latest", "content": [ { "type": "text", "text": "Mocked response here!" } ], "stop_reason": "end_turn", "stop_sequence": null, "usage": { "input_tokens": 100, "output_tokens": 20 } } ')]); $client = new GuzzleHttp\Client([ 'base_uri' => 'https://0.0.0.0', 'handler' => GuzzleHttp\HandlerStack::create($mock) ]); $prompt = new ElliotJReed\AI\Claude\Prompt('API KEY', 'test-model', $client); $prompt->response = 'Mocked response here!' $request = (new ElliotJReed\AI\Entity\Request()) ->setSystemPrompt('You are using expert software development knowledge to help software developers of varying levels of experience') ->setTextPrompt('Which programming language will outlive humanity?'); $response = $prompt->send($request); echo 'Used input tokens: ' . $response->getUsage()->getInputTokens() . \PHP_EOL; echo 'Used output tokens: ' . $response->getUsage()->getOutputTokens() . \PHP_EOL; echo 'Response from AI: ' . $response->getContent() . \PHP_EOL; // Output: 'Mocked response here!' print_r($response->getHistory());
<?php require_once __DIR__ . '/vendor/autoload.php'; $mock = new GuzzleHttp\Handler\MockHandler([new GuzzleHttp\Psr7\Response(200, [], '{ "id": "chatcmpl-happymoosegoesboopboop", "object": "chat.completion", "created": 1723486738, "model": "gpt-4o-mini-2024-07-18", "choices": [ { "index": 0, "message": { "role": "assistant", "content": "PHP will likely outlive humanity due to it being generally great and loved by all. It could easily last another 7 million years, powering what is left of the planet once all of humanity has migrated to Pluto for reasons of nostalgia.", "refusal": null }, "logprobs": null, "finish_reason": "length" } ], "usage": { "prompt_tokens": 60, "completion_tokens": 29, "total_tokens": 89 }, "system_fingerprint": "fp_boopityboop" }')]); $client = new GuzzleHttp\Client([ 'base_uri' => 'https://0.0.0.0', 'handler' => GuzzleHttp\HandlerStack::create($mock) ]); $prompt = new ElliotJReed\AI\ChatGPT\Prompt('API KEY', 'test-model', $client); $prompt->response = 'Mocked response here!' $request = (new ElliotJReed\AI\Entity\Request()) ->setSystemPrompt('You are using expert software development knowledge to help software developers of varying levels of experience') ->setTextPrompt('Which programming language will outlive humanity?'); $response = $prompt->send($request); echo 'Used input tokens: ' . $response->getUsage()->getInputTokens() . \PHP_EOL; echo 'Used output tokens: ' . $response->getUsage()->getOutputTokens() . \PHP_EOL; echo 'Response from AI: ' . $response->getContent() . \PHP_EOL; // Output: 'Mocked response here!' print_r($response->getHistory());
Development
Getting Started
PHP 8.3 or above and Composer is expected to be installed.
Installing Composer
For instructions on how to install Composer visit getcomposer.org.
Installing
After cloning this repository, change into the newly created directory and run:
composer install
or if you have installed Composer locally in your current directory:
php composer.phar install
This will install all dependencies needed for the project.
Henceforth, the rest of this README will assume composer
is installed globally (ie. if you are using composer.phar
you will need to use composer.phar
instead of composer
in your terminal / command-line).
Running the Tests
Unit tests
Unit testing in this project is via PHPUnit.
All unit tests can be run by executing:
composer phpunit
Debugging
To have PHPUnit stop and report on the first failing test encountered, run:
composer phpunit:debug
Code formatting
A standard for code style can be important when working in teams, as it means that less time is spent by developers processing what they are reading (as everything will be consistent).
Code formatting is automated via PHP-CS-Fixer. PHP-CS-Fixer will not format line lengths which do form part of the PSR-2 coding standards so these will product warnings when checked by PHP Code Sniffer.
These can be run by executing:
composer phpcs
Running everything
All the tests can be run by executing:
composer test
Outdated dependencies
Checking for outdated Composer dependencies can be performed by executing:
composer outdated
Validating Composer configuration
Checking that the composer.json is valid can be performed by executing:
composer validate --no-check-publish
Running via GNU Make
If GNU Make is installed, you can replace the above composer
command prefixes with make
.
All the tests can be run by executing:
make test
Running the tests on a Continuous Integration platform (eg. Github Actions)
Specific output formats better suited to CI platforms are included as Composer scripts.
To output unit test coverage in text and Clover XML format (which can be used for services such as Coveralls):
composer phpunit:ci
To output PHP-CS-Fixer (dry run) and PHPCS results in checkstyle format (which GitHub Actions will use to output a readable format):
composer phpcs:ci
Github Actions
Look at the example in .github/workflows/php.yml.
Built With
License
This project is licensed under the MIT License - see the LICENCE.md file for details.