cv65kr / sylius-personalized-products
Personalized products, choices by machine learning (Prediction IO) for Sylius.
Installs: 0
Dependents: 0
Suggesters: 0
Security: 0
Stars: 3
Watchers: 1
Forks: 0
Open Issues: 0
Type:sylius-plugin
Requires
- php: ^7.2
- predictionio/predictionio: ^0.9.1
- sylius/sylius: ^1.1|^1.2|~1.3.0@dev
- symfony/symfony: ^3.4|^4.1
Requires (Dev)
- behat/behat: ^3.4
- behat/mink: ^1.7@dev
- behat/mink-browserkit-driver: ^1.3
- behat/mink-extension: ^2.2
- behat/mink-selenium2-driver: ^1.3
- friends-of-behat/context-service-extension: ^1.2
- friends-of-behat/cross-container-extension: ^1.1
- friends-of-behat/service-container-extension: ^1.0
- friends-of-behat/symfony-extension: ^1.2.1
- friends-of-behat/variadic-extension: ^1.1
- lakion/mink-debug-extension: ^1.2.3
- phpspec/phpspec: ^4.0
- phpstan/phpstan-doctrine: ^0.10
- phpstan/phpstan-shim: ^0.10
- phpstan/phpstan-symfony: ^0.10
- phpstan/phpstan-webmozart-assert: ^0.10
- phpunit/phpunit: ^6.5
- sylius-labs/coding-standard: ^2.0
This package is auto-updated.
Last update: 2025-03-29 00:40:22 UTC
README
Overview
I used Apache PredictionIO to create plugin, which shows personalize recommended products, based on watched products.
Installation
Sylius
composer require cv65kr/sylius-personalized-products
Add plugin dependencies to your AppKernel.php file:
public function registerBundles() { return array_merge(parent::registerBundles(), [ ... new \cv65kr\SyliusPersonalizedProducts\SyliusPersonalizedProductsPlugin(), ]); }
Import required config in your app/config/config.yml file and setup parameters:
imports: ... - { resource: "@SyliusPersonalizedProductsPlugin/Resources/config/services.yml" } parameters: sylius_prediction_event_host: http://machine_learning sylius_prediction_event_port: 7070 sylius_prediction_engine_host: https://machine_learning sylius_prediction_engine_port: 8000 sylius_prediction_key: 'a-mevXQWyArRnxmHvlFKrjHLdjuvhnpqOgYEu8XgvfpLW0RTuPl_wUUQo3ZWQa5F'
Import routing in your app/config/routing.yml file:
app_personalized_products: resource: "@SyliusPersonalizedProductsPlugin/Resources/config/routing.yml"
Embed in template:
{{ render(path('sylius_personalized_products_controller')) }}
Note 1: Controller render should be used only for logged customers.
Note 2: You can use limit
and template
parameres in route.
Apache PredictionIO
First of all, add in docker-compose.yml
machine learning:
machine_learning: build: ../ml ports: - "9000:9000" - "7070:7070" - "8000:8000" volumes: - /ml/engine:/CustomEngine
And go inside container:
docker exec -it machine_learning bash
Next:
cd /CustomEngine
We need, download template for 0.9 version:
pio template get apache/predictionio-template-recommender --version v0.3.2 MyRecommendation
Create API key and paste them in Sylius config parameter - sylius_prediction_key
:
pio app new SyliusPersonalizedProducts
Let’s verify that our new app is there with this command:
pio app list
In Sylius run:
bin/console s:p:p
And now back into machine_learning
container
cd /CustomEngine/MyRecommendation
Build, they may few minutes:
pio build --verbose
Edit engine.json
:
vim engine.json
Change:
"appName": "INVALID_APP_NAME"
To:
"appName": "SyliusPersonalizedProducts"
Next train:
Create sample data for training and import them by:
pio import --appid 1 --input data-sample.json
Note: Example sample file, You need modify this file: https://gist.githubusercontent.com/vaghawan/0a5fb8ddb85e03631dd500d7c8f0677d/raw/17487437dd8269588d9dd1ac859b129a43842ba5/data-sample.json
Next run:
pio train
And deploy, hooray!
pio deploy
Contribution
Learn more about our contribution workflow on http://docs.sylius.org/en/latest/contributing/.