mcpuishor / qdrant-laravel
A fluent package to interact with Qdrant Vector Database
Requires
- php: ^8.2|^8.3
- illuminate/support: ^10.0|^11.0|^12.0
Requires (Dev)
- orchestra/testbench: ^9.0|^10.0
- pestphp/pest: ^3.7.0
- pestphp/pest-plugin-laravel: *
- phpunit/phpunit: ^11.0
This package is auto-updated.
Last update: 2025-06-02 16:04:27 UTC
README
Introduction
This package provides an elegant, fluent interface for interacting with the Qdrant Vector Database in Laravel. Qdrant is a vector similarity search engine that makes it easy to store and search for embeddings, making it ideal for AI-powered applications.
Key features:
- Simple collection management
- Fluent search API with filtering and grouping
- Efficient point operations (insert, upsert, delete)
- Laravel Facade support
- Convenient payload handling
Installation
1. Install via Composer
composer require mcpuishor/qdrant-laravel
2. Publish the Configuration File
php artisan vendor:publish --tag=qdrant-laravel-config
This will create a config/qdrant-laravel.php
file where you can set your Qdrant connections and defaults.
3. Set Up Your .env
File
Update your .env
file with your Qdrant host details:
QDRANT_DEFAULT=main QDRANT_HOST=http://localhost:6333 QDRANT_COLLECTION=collection_name QDRANT_VECTOR_SIZE=1536 QDRANT_DEFAULT_DISTANCE_METRIC=Cosine
Configuration
The config/qdrant-laravel.php
file allows multiple connections:
return [ 'default' => env('QDRANT_DEFAULT', 'main'), 'connections' => [ 'main' => [ 'host' => env('QDRANT_HOST', 'http://localhost:6333'), 'api_key' => env('QDRANT_API_KEY', null), 'collection' => env('QDRANT_COLLECTION', 'default_collection'), 'vector_size' => env('QDRANT_VECTOR_SIZE', 128), ], ], 'default_distance_metric' => env('QDRANT_DEFAULT_DISTANCE_METRIC', 'Cosine'), ];
Schema Management (Migrations)
Creating a new collection
A collection must contain at least one vector. An optional parameter options
can contain additional
parameters described as an associative array. See the Qdrant documentation for details. The options can be specified using arrays
or DataObjects defined in the package.
The response is a boolean value, unless an exception is thrown.
use \Mcpuishor\QdrantLaravel\Facades\Schema; use \Mcpuishor\QdrantLaravel\Enums\DistanceMetric; use \Mcpuishor\QdrantLaravel\DTOs\Vector; $vector = Vector::fromArray([ 'size' => 128, 'distance' => DistanceMetric::COSINE ]); $response = Schema::create( name: "new_collection", vector: $vector, options: [] ); if ($response) { echo "Schema created successfully"; }
Creating a new collection on a different connection
You can switch the connection at runtime. The connection must be defined in the
config\qdrant-laravel.php
file.
use \Mcpuishor\QdrantLaravel\Schema; use \Mcpuishor\QdrantLaravel\Enums\DistanceMetric; use \Mcpuishor\QdrantLaravel\DTOs\Vector; $vector = Vector::fromArray([ 'size' => 128, 'distance' => DistanceMetric::COSINE ]); $response = Schema::connection('backup') ->create( name: "new_collection", vector: $vector, ); if ($response) { echo "Schema created successfully"; }
Creating a collection with multiple vectors
A collection can contain multiple vectors per point. They need to be passed on to the Schema::create
as an array containing the definitions of each vector. The vectors can have different definitions. The
optional parameters can be specified using Data Objects defined in the package.
use \Mcpuishor\QdrantLaravel\Schema; use \Mcpuishor\QdrantLaravel\QdrantTransport; use \Mcpuishor\QdrantLaravel\Enums\DistanceMetric; use \Mcpuishor\QdrantLaravel\DTOs\Vector; use \Mcpuishor\QdrantLaravel\DTOs\HnswConfig; $vector1 = Vector::fromArray([ 'size' => 128, 'distance' => DistanceMetric::COSINE //optional parameters 'on_disk' => true, ]); $vector2 = Vector::fromArray([ 'size' => 1024, 'distance' => DistanceMetric::COSINE, //optional parameters 'hsnw_config' => Hnswconfig::fromArray([ 'm' => 10, 'ef_construct' => 4, 'on_disk' => true, ]), ]); $response = Schema::create( name: "new_collection", vector: array($vector1, $vector2), ); if ($response) { echo "Schema created successfully"; }
Deleting a collection
To delete a collection, you can call the delete
method on the Schema
facade.
It returns a Mcpuishor\QdrantLaravel\DTOs\Response
object.
use \Mcpuishor\QdrantLaravel\Facades\Schema; $result = Schema::delete('collection_name'); if ($result) { echo "Collection has been successfully deleted."; }
Collection existence
To check if the collection defined in the config on the current connection exists:
use \Mcpuishor\QdrantLaravel\Facades\Schema; if ( Schema::exists() ) { echo "Collection exists."; }
At the same time, you can check the existence of a different collection on the same connection:
use \Mcpuishor\QdrantLaravel\Facades\Schema; if ( Schema::exists( 'another_collection' ) ) { echo "Collection 'another_collection' exists."; }
Updating a collection
Updating parameters on an existing collection can be done in a similar fashion to creating one. The parameters updated can be specified using arrays or Data Objects defined in the package.
Updating the collection defined in the config\qdrant-laravel.php
:
use \Mcpuishor\QdrantLaravel\Facades\Schema; use \Mcpuishor\QdrantLaravel\DTOs\HnswConfig; use \Mcpuishor\QdrantLaravel\DTOs\Collection\Params; Schema::update( vectors: [ ], options: [ 'hnsw_config' => HnswConfig::fromArray([ 'm' => 100, 'ef_construct' => 5, ]), 'params' => Params::fromArray([ 'replication_factor' => 4, 'on_disk_payload' => true, ]), ] );
Indexing a collection
Indexes in a Qdrant vector collection are created on the payload for each vector. For more details see the Qdrant documentation.
Creating an index
To create a payload index over a field:
use \Mcpuishor\QdrantLaravel\Facades\Client as Qdrant; use \Mcpuishor\QdrantLaravel\Enums\FieldType; $result = Qdrant::indexes()->add('field_name', FieldType::KEYWORD);
It returns true
if the operation was successful, or false
otherwise.
You can use dot notation to create indexes over nested fields.
By default, indexes are stored in memory. If you have large indexes, and they
need to be stored on the disk, you can use the ->onDisk()
method before
creating the index. Choose carefully when to store an index on the disk,
as this will introduce some latency in your future queries.
Parameterized integer indexes
Qdrant v1.8.0 has introduced a parameterized variant of the integer index.
To turn the parameterized index on you can call the ->parameterized()
method before creating an integer
index. This setting is used only for integer
fields
in the payload.
Values of the lookup
and range
can be toggled in the config\qdrant-laravel.php
file.
For more information on parameterized integer indexes and how they affect performance
check the Qdrant documentation
$result = Qdrant::indexes()->parameterized()->add('field_name', FieldType::INTEGER);
It returns true
if the operation was successful, or false
otherwise.
Full-text indexes
Qdrant supports full-text search for string payload. Full-text index allows you to filter points by the presence of a word or a phrase in the payload field.
use \Mcpuishor\QdrantLaravel\Enums\TokenizerType; use \Mcpuishor\QdrantLaravel\Facades\Client as Qdrant; $result = Qdrant::indexes()->fulltext('text_field_name', TokenizerType::WORD);
It returns true
if the operation was successful, or false
otherwise.
Deleting an index
use \Mcpuishor\QdrantLaravel\Facades\Client as Qdrant; $result = Qdrant::indexes()->delete('payload_field');
It returns true
if the operation was successful, or false
otherwise.
Searching
The package provides a fluent interface for searching vectors in your Qdrant collection.
Basic Vector Search
To perform a simple search with a vector:
use Mcpuishor\QdrantLaravel\Facades\Client as Qdrant; // Search using a vector $results = Qdrant::search() ->vector([0.2, 0.3, 0.4, ...]) // Your vector data ->limit(10) ->get();
Search by Point ID
You can also search for similar points to an existing point by its ID:
use Mcpuishor\QdrantLaravel\Facades\Client as Qdrant; use Mcpuishor\QdrantLaravel\DTOs\Point; $point = new Point(id: 123); $results = Qdrant::search() ->point($point) ->limit(5) ->get();
Including Payload and Vectors
Control what data is returned with your search results:
// Include all payload data $results = Qdrant::search() ->vector($vector) ->withPayload() ->get(); // Include only specific payload fields $results = Qdrant::search() ->vector($vector) ->include(['name', 'description']) ->get(); // Exclude specific payload fields $results = Qdrant::search() ->vector($vector) ->exclude(['internal_id']) ->get(); // Include vector data in results $results = Qdrant::search() ->vector($vector) ->withVectors() ->get();
Pagination
Control the number of results and implement pagination:
// Limit results $results = Qdrant::search() ->vector($vector) ->limit(20) ->get(); // Pagination with offset $results = Qdrant::search() ->vector($vector) ->limit(10) ->offset(20) // Skip first 20 results ->get();
Filtering Results
Apply filters to search results using the fluent filter API:
// Simple equality filter $results = Qdrant::search() ->vector($vector) ->where('category', '=', 'electronics') ->get(); // Range filter $results = Qdrant::search() ->vector($vector) ->where('price', '>=', 100) ->where('price', '<=', 500) ->get(); // Multiple conditions $results = Qdrant::search() ->vector($vector) ->where('category', '=', 'electronics') ->where('in_stock', '=', true) ->get(); // Nested conditions $results = Qdrant::search() ->vector($vector) ->where(function($query) { $query->where('category', '=', 'electronics') ->orWhere('category', '=', 'gadgets'); }) ->where('price', '<', 1000) ->get();
Grouping Results
Group search results by a payload field:
// Group results by category $results = Qdrant::search() ->vector($vector) ->groupBy('category', 5) // 5 results per group ->get();
Batch Searching
Perform multiple searches in a single request:
$search1 = Qdrant::search()->vector($vector1)->limit(5); $search2 = Qdrant::search()->vector($vector2)->limit(5); $batchResults = Qdrant::search()->batch([$search1, $search2]);
Random Sampling
Get random points from the collection:
$randomPoints = Qdrant::search()->random();
Using Named Vectors
If your collection has multiple named vectors, specify which one to use:
$results = Qdrant::search() ->vector($vector) ->using('image_embedding') // Use the named vector ->get();
Recommendations
The package provides a recommendation system based on positive and negative examples.
Basic Recommendations
Get recommendations based on positive examples:
use Mcpuishor\QdrantLaravel\Facades\Client as Qdrant; // Recommend based on point IDs $recommendations = Qdrant::recommend() ->positive([123, 456]) // Points you like ->limit(10) ->get();
Positive and Negative Examples
Refine recommendations with both positive and negative examples:
$recommendations = Qdrant::recommend() ->positive([123, 456]) // Points you like ->negative([789, 101]) // Points you don't like ->limit(10) ->get();
Recommendation Strategy
Control how vectors are combined for recommendations:
use Mcpuishor\QdrantLaravel\Enums\AverageVectorStrategy; $recommendations = Qdrant::recommend() ->positive([123, 456]) ->strategy(AverageVectorStrategy::WEIGHTED) // Use weighted average ->limit(10) ->get();
Available strategies include:
AverageVectorStrategy::MEAN
- Simple average of vectorsAverageVectorStrategy::WEIGHTED
- Weighted average based on similarity
Point Operations
The package provides methods for managing points in your Qdrant collection.
Retrieving Points
Get points by their IDs:
use Mcpuishor\QdrantLaravel\Facades\Client as Qdrant; // Get multiple points $points = Qdrant::points()->get([123, 456, 789]); // Find a single point $point = Qdrant::points()->find(123);
Controlling Returned Data
Control what data is returned with the points:
// With payload (default) $points = Qdrant::points()->withPayload()->get([123, 456]); // Without payload $points = Qdrant::points()->withoutPayload()->get([123, 456]); // With vector data $points = Qdrant::points()->withVector()->get([123, 456]); // Without vector data (default) $points = Qdrant::points()->withoutVector()->get([123, 456]);
Inserting Points
Insert a new point into the collection:
use Mcpuishor\QdrantLaravel\DTOs\Point; // Create a point $point = new Point( id: 123, vector: [0.2, 0.3, 0.4, ...], payload: ['name' => 'Example', 'category' => 'test'] ); // Insert the point $success = Qdrant::points()->insert($point);
Upserting Points
Insert or update multiple points:
use Mcpuishor\QdrantLaravel\PointsCollection; use Mcpuishor\QdrantLaravel\DTOs\Point; // Create points collection $points = new PointsCollection([ new Point(id: 123, vector: [0.2, 0.3, 0.4, ...], payload: ['name' => 'First']), new Point(id: 456, vector: [0.5, 0.6, 0.7, ...], payload: ['name' => 'Second']) ]); // Upsert the points $success = Qdrant::points()->upsert($points);
Deleting Points
Delete points by their IDs:
// Delete specific points $success = Qdrant::points()->delete([123, 456]); // Delete points matching a filter $success = Qdrant::points() ->where('category', '=', 'test') ->delete([]);
Autochunking
Efficiently handle large numbers of points with automatic chunking:
// Create an autochunker with chunk size of 100 $chunker = Qdrant::points()->autochunk(100); // Add points - they'll be automatically upserted when the chunk size is reached foreach ($largeDataset as $data) { $point = new Point( id: $data['id'], vector: $data['embedding'], payload: $data['metadata'] ); $chunker->add($point); } // Manually flush any remaining points $chunker->flush();
Artisan Commands
Creating a Collection with indexes
php artisan qdrant:migrate --collection=plants --vector-size=256 --distance-metric=euclidean --indexes='{"species":"text","age":"integer"}'
Rolling Back a Migration (Dropping Collection & Indexes)
php artisan qdrant:migrate --rollback --collection=plants
Extending with Macros
The query builder and client are Macroable, allowing custom methods:
use Mcpuishor\QdrantLaravel\QdrantClient; QdrantClient::macro('byClimate', function ($climate) { return $this->where('climate', '=', $climate); }); $results = Qdrant::collection('plants')->byClimate('tropical')->get();
Conclusion
This package simplifies working with Qdrant in Laravel, making it easy to integrate vector search and AI-powered applications. Contributions are welcome!
License
This package is open-source and available under the MIT License.