edgaras / azurellm
PHP package for integrating and interacting with deployed Azure LLM models
v1.4.1
2025-03-27 06:14 UTC
Requires
- php: >=8.1.0
- guzzlehttp/guzzle: ^7.9
Requires (Dev)
- phpunit/phpunit: ^11.5
README
PHP package for integrating and interacting with deployed Azure LLM models.
🚀 Changelog (v1.4.1)
New Features
- Added
DeepSeek
model support.
📌 Documentation
Features
- Simplifies managing Azure OpenAI API settings such as API keys, endpoints, deployments, and API versions.
- Full support for Agents, Threads, and Vector Stores.
- Integrated Azure AI Search functionalities.
Requirements
- PHP 8.1+
- Composer
Installation
- Use the library via Composer:
composer require edgaras/azurellm
- Include the Composer autoloader:
require __DIR__ . '/vendor/autoload.php';
Usage
1. Initialization
Set up your Azure OpenAI configuration:
use Edgaras\AzureLLM\LLM; $config = new LLM([ 'apiKey' => '<YOUR-API-KEY>', 'endpoint' => 'https://<DEPLOYMENT>.openai.azure.com', 'deployment' => '<MODEL-DEPLOYMENT-ID>', 'apiVersion' => '<API-VERSION>' ]);
2. Basic usage
Send requests to your Azure OpenAI deployment:
use Edgaras\AzureLLM\LLM; use Edgaras\AzureLLM\AzureOpenAI; $config = new LLM([ 'apiKey' => '<YOUR-API-KEY>', 'endpoint' => 'https://<DEPLOYMENT>.openai.azure.com', 'deployment' => '<MODEL-DEPLOYMENT-ID>', 'apiVersion' => '<API-VERSION>' ]); $azureLLM = new AzureOpenAI($config); $inputMessages = [ ['role' => 'system', 'content' => 'You are a helpful assistant.'], ['role' => 'user', 'content' => 'What is the capital of Lithuania?'] ]; $options = [ "temperature" => 0.7, "top_p" => 0.95, "max_tokens" => 150 ]; $response = $azureLLM->chatCompletions($inputMessages, $options);
3. Use with Azure AI Search
Combine the Azure OpenAI service with Azure Search for contextual completions:
use Edgaras\AzureLLM\LLM; use Edgaras\AzureLLM\AzureOpenAI; $config = new LLM([ 'apiKey' => '<YOUR-API-KEY>', 'endpoint' => 'https://<DEPLOYMENT>.openai.azure.com', 'deployment' => '<MODEL-DEPLOYMENT-ID>', 'apiVersion' => '<API-VERSION>' ]); $azureLLM = new AzureOpenAI($config); $inputMessages = [ ['role' => 'system', 'content' => 'You are a helpful assistant.'], ['role' => 'user', 'content' => 'Summarize your knowledgebase'] ]; $options = [ "temperature" => 0.7, "top_p" => 0.95, "max_tokens" => 150 ]; $data_sources = [[ "type" => "azure_search", "parameters" => [ "filter" => null, "endpoint" => 'https://<SEARCH-DEPLOYMENT>.search.windows.net', "index_name" => '<SEARCH-INDEX-NAME>', "authentication" => [ "type" => "api_key", "key" => '<SEARCH-API-KEY>' ], ], ]]; $response = $azureLLM->chatCompletions($inputMessages, $options, $data_sources);
4. Initialize AI Search Configuration
use Edgaras\AzureLLM\AISearch\Auth; $config = new Auth([ 'apiKey' => '<YOUR-API-KEY>', 'endpoint' => 'https://<YOUR-SEARCH-SERVICE>.search.windows.net', 'apiVersion' => '2023-07-01-Preview' ]);
5. Manage AI Search Indexes
use Edgaras\AzureLLM\AISearch\Index; $indexService = new Index($config); // Define Index Fields $fields = [ ['name' => 'id', 'type' => 'Edm.String', 'key' => true], ['name' => 'content', 'type' => 'Edm.String', 'searchable' => true, 'retrievable' => true] ]; // Create Index $indexService->createIndex('test-index', $fields); // List all indexes $indexes = $indexService->listIndexes(); print_r($indexes);
6. Manage AI Search Indexers
use Edgaras\AzureLLM\AISearch\Indexer; $indexerService = new Indexer($config); // Define Indexer $indexerConfig = [ 'dataSourceName' => 'test-data-source', 'targetIndexName' => 'test-index', 'schedule' => ['interval' => 'P1D'] ]; // Create Indexer $indexerService->createIndexer('test-indexer', $indexerConfig); // Run Indexer Manually $indexerService->runIndexer('test-indexer');
7. Manage AI Search Data Sources
use Edgaras\AzureLLM\AISearch\DataSource; $dataSourceService = new DataSource($config); // Define Data Source Configuration $dataSourceConfig = [ 'type' => 'azureblob', 'credentials' => ['connectionString' => '<YOUR-STORAGE-CONNECTION-STRING>'], 'container' => ['name' => 'your-container'] ]; // Create Data Source $dataSourceService->createDataSource('test-data-source', $dataSourceConfig);
8. Agents & Threads
use Edgaras\AzureLLM\LLM; use Edgaras\AzureLLM\Agents\Agent; use Edgaras\AzureLLM\Agents\Thread; // Initialize $config = new LLM([ 'apiKey' => '<API-KEY>', 'endpoint' => 'https://<DEPLOYMENT-NAME>.openai.azure.com', 'deployment' => '<MODEL>', 'apiVersion' => '2024-05-01-preview' ]); $agent = new Agent($config); $thread = new Thread($config); // Create an Agent $agentResponse = $agent->createAgent("SupportBot", "Assist users with support queries."); $agentId = $agentResponse['id']; // Start a conversation thread $threadResponse = $thread->createThread(); $threadId = $threadResponse['id']; // Send a message $thread->addMessageToThread($threadId, "user", "How do I reset my password?"); // Run the AI Assistant on the thread $thread->runThread($threadId, $agentId);
9. Basic usage (DeepSeek)
Send requests to your DeepSeek deployment:
use Edgaras\AzureLLM\LLM; use Edgaras\AzureLLM\DeepSeek; $config = new LLM([ 'apiKey' => '<YOUR-API-KEY>', 'endpoint' => 'https://<DEPLOYMENT>.services.ai.azure.com', 'deployment' => '<MODEL-DEPLOYMENT-ID>', 'apiVersion' => '<API-VERSION>' ]); $deepSeek = new DeepSeek($config); $inputMessages = [ ['role' => 'system', 'content' => 'You are a helpful assistant.'], ['role' => 'user', 'content' => 'What is the capital of Lithuania?'] ]; $options = [ "temperature" => 0.7, "top_p" => 0.95, "max_tokens" => 150 ]; $response = $deepSeek->chatCompletions($inputMessages, $options);