vluzrmos/ollama-php

Cliente PHP para a API do Ollama/OpenAI

v0.0.1 2025-08-15 16:12 UTC

This package is auto-updated.

Last update: 2025-08-15 16:12:25 UTC


README

PHP client for Ollama API, compatible with PHP 5.6+. This library provides an easy-to-use interface to interact with Ollama server and also includes OpenAI API compatibility.

Features

  • ✅ Compatible with PHP 5.6+
  • ✅ Full support for Ollama native API
  • New: OpenAI API endpoints compatibility
  • New: Model class for reusable model configuration
  • ✅ Chat completions with history
  • ✅ Response streaming
  • ✅ Image support (vision models like Llava)
  • ✅ Function calling (tools)
  • ✅ Embeddings
  • ✅ Model management
  • ✅ Robust error handling
  • ✅ Complete documentation

Installation

composer require vluzrrmos/ollama-php

Quick Usage

Ollama Client (Native API)

<?php

require_once 'vendor/autoload.php';

use Vluzrmos\Ollama\Ollama;
use Vluzrmos\Ollama\Models\Message;
use Vluzrmos\Ollama\Models\Model;

// Create client
$ollama = new Ollama('http://localhost:11434');

// Simple chat
$response = $ollama->chat([
    'model' => 'llama3.2',
    'messages' => [
        Message::system('You are a helpful assistant.')->toArray(),
        Message::user('Hello!')->toArray()
    ]
]);

echo $response['message']['content'];

OpenAI Client (Compatible)

<?php
use Vluzrmos\Ollama\OpenAI;
use Vluzrmos\Ollama\Models\Model;

// Create OpenAI compatible client
$openai = new OpenAI('http://localhost:11434/v1', 'ollama');

// Chat using OpenAI methods
$response = $openai->chat('llama3.2', [
    $openai->systemMessage('You are a helpful assistant.'),
    $openai->userMessage('Hello!')
]);

echo $response['choices'][0]['message']['content'];

Model Class for Reuse

<?php
use Vluzrmos\Ollama\Models\Model;

// Create model
$model = (new Model('llama3.2'))
    ->setTemperature(0.8)
    ->setTopP(0.9)
    ->setNumCtx(4096)
    ->setSeed(42);

// Use with OpenAI client
$response = $openai->chat($model, [
    $openai->userMessage('Tell me a story')
]);

// Or use with Ollama client
$params = array_merge($model->toArray(), [
    'messages' => [Message::user('Tell me a story')->toArray()]
]);
$response = $ollama->chat($params);

Advanced Examples

Streaming

<?php
// With Ollama client
$ollama->generate([
    'model' => 'llama3.2',
    'prompt' => 'Tell me a story',
    'stream' => true
], function($chunk) {
    if (isset($chunk['response']) echo $chunk['response'];
});

// With OpenAI client
$openai->chatStream('llama3.2', [
    $openai->userMessage('Tell me a story')
], function($chunk) {
    if (isset($chunk['choices'][0]['delta']['content']) echo $chunk['choices'][0]['delta']['content'];
});

Vision Models (Images)

<?php
// With OpenAI client
$response = $openai->chat('llava', [
    $openai->imageMessage(
        'What do you see in this image?',
        '...'
    )
]);

Function Calling (Tools)

<?php
$tools = [
    [
        'type' => 'function',
        'function' => [
            'name' => 'get_weather',
            'description' => 'Get weather information',
            'parameters' => [
                'type' => 'object',
                'properties' => [
                    'location' => [
                        'type' => 'string',
                        'description' => 'Location'
                    ]
                ],
                'required' => ['location']
            ]
        ]
    ]
];

$response = $openai->chatCompletions([
    'model' => 'llama3.2',
    'messages' => [
        $openai->userMessage('How is the weather in São Paulo?')
    ],
    'tools' => $tools
]);

Advanced Tool System

This library provides a comprehensive tool system for creating and executing custom tools with the ToolManager class.

Creating Custom Tools

Create tools by implementing the ToolInterface or extending AbstractTool:

<?php
use Vluzrmos\Ollama\Tools\AbstractTool;

class CalculatorTool extends AbstractTool
{
    public function getName()
    {
        return 'calculator';
    }

    public function getDescription()
    {
        return 'Performs basic mathematical operations';
    }

    public function getParametersSchema()
    {
        return [
            'type' => 'object',
            'properties' => [
                'operation' => [
                    'type' => 'string',
                    'enum' => ['add', 'subtract', 'multiply', 'divide']
                ],
                'a' => ['type' => 'number'],
                'b' => ['type' => 'number']
            ],
            'required' => ['operation', 'a', 'b']
        ];
    }

    public function execute(array $arguments)
    {
        $a = $arguments['a'];
        $b = $arguments['b'];
        $operation = $arguments['operation'];
        
        switch ($operation) {
            case 'add': return json_encode(['result' => $a + $b]);
            case 'subtract': return json_encode(['result' => $a - $b]);
            case 'multiply': return json_encode(['result' => $a * $b]);
            case 'divide': 
                if ($b == 0) return json_encode(['error' => 'Division by zero']);
                return json_encode(['result' => $a / $b]);
        }
    }
}

Using Tool Manager

<?php
use Vluzrmos\Ollama\Tools\ToolManager;

// Create and register tools
$toolManager = new ToolManager();
$toolManager->registerTool(new CalculatorTool());

// Make API call with tools
$response = $openai->chatCompletions([
    'model' => 'llama3.2',
    'messages' => [
        ['role' => 'user', 'content' => 'What is 15 + 27?']
    ],
    'tools' => $toolManager->toArray()
]);

// Handle tool calls from response
if (isset($response['choices'][0]['message']['tool_calls'])) {
    $toolCalls = $response['choices'][0]['message']['tool_calls'];
    
    // Execute all tool calls
    $results = $toolManager->executeToolCalls($toolCalls);
    
    // Convert results to message format
    $toolMessages = $toolManager->toolCallResultsToMessages($results);
    
    // Send results back to model
    $messages = [
        ['role' => 'user', 'content' => 'What is 15 + 27?'],
        $response['choices'][0]['message'], // Original response with tool_calls
        ...$toolMessages // Tool results
    ];
    
    $finalResponse = $openai->chatCompletions([
        'model' => 'llama3.2',
        'messages' => $messages
    ]);
    
    echo $finalResponse['choices'][0]['message']['content'];
}

Tool Call Execution Methods

The ToolManager provides several methods for handling tool calls:

  • executeToolCalls($toolCalls) - Executes multiple tool calls and returns results
  • toolCallResultsToMessages($results) - Converts tool results to API message format
  • registerTool($tool) - Registers a new tool
  • listTools() - Lists all registered tool names
  • getStats() - Gets statistics about registered tools

Error Handling in Tools

<?php
// Tool execution handles errors gracefully
$toolCalls = [
    [
        'id' => 'call_001',
        'type' => 'function',
        'function' => [
            'name' => 'non_existent_tool',
            'arguments' => '{}'
        ]
    ]
];

$results = $toolManager->executeToolCalls($toolCalls);

foreach ($results as $result) {
    if ($result['success']) {
        echo "Tool executed successfully: " . $result['result'];
    } else {
        echo "Tool execution failed: " . $result['error'];
    }
}

JSON Mode

<?php
$response = $openai->chat('llama3.2', [
    $openai->systemMessage('Always respond in valid JSON.'),
    $openai->userMessage('List 3 primary colors')
], [
    'response_format' => $openai->jsonFormat()
]);

JSON Schema

<?php
$response = $openai->chat('llama3.2', [
    'messages' => [
        Message::user('What are the primary colors?')->toArray()
    ],
    'response_format' => [
            'type' => 'json_schema',
            'json_schema' => [
                'name' => 'primary_colors',
                'description' => 'List of primary colors',
                'strict' => true,
                'schema' => [
                    'type' => 'object',
                    'properties' => [
                        'colors' => [
                            'type' => 'array',
                            'description' => 'List of primary colors in user language',
                            'items' => ['type' => 'string']
                        ]
                    ],
                    'required' => ['colors']
                ],
                
            ]
    ]
]);

echo json_encode($response['choices'][0]['message']['content'], JSON_PRETTY_PRINT);
{
    "colors": ["red", "blue", "yellow"]
}

Note: JSON Schema format is useful for validating response structure and ensuring it meets user expectations. Not all models support this format, so check the specific model documentation.

Embeddings

<?php
// Ollama
$response = $ollama->embeddings([
    'model' => 'all-minilm',
    'input' => 'Text for embedding'
]);

// OpenAI
$response = $openai->embed('all-minilm', [
    'First text',
    'Second text'
]);

OpenAI Compatibility

This library implements the following OpenAI API endpoints:

  • /v1/chat/completions
  • /v1/completions
  • /v1/embeddings
  • /v1/models
  • /v1/models/{model}

Supported Parameters

Chat Completions

  • model, messages, temperature, top_p, max_tokens
  • stream, stream_options, stop, seed
  • frequency_penalty, presence_penalty
  • response_format (JSON mode: json_object, json_schema)
  • tools (function calling)

Completions

  • model, prompt, temperature, top_p, max_tokens
  • stream, stream_options, stop, seed, suffix
  • frequency_penalty, presence_penalty

Embeddings

  • model, input (string or array)

Model Management

// List models
$models = $ollama->listModels();

// Download model
$ollama->pullModel(['model' => 'llama3.2']);

// Model information
$info = $ollama->showModel('llama3.2');

// Delete model
$ollama->deleteModel('old-model');

Error Handling

<?php
use Vluzrmos\Ollama\Exceptions\OllamaException;

try {
    $response = $ollama->chat([
        'model' => 'non-existent-model',
        'messages' => [Message::user('Hello')->toArray()]
    ]);
} catch (OllamaException $e) {
    echo "Error: " . $e->getMessage();
    echo "Code: " . $e->getCode();
}

Configuration

Client Options

<?php
$ollama = new Ollama('http://localhost:11434', [
    'timeout' => 60,
    'connect_timeout' => 10,
    'verify_ssl' => false
]);

$openai = new OpenAI('http://localhost:11434/v1', 'ollama', [
    'timeout' => 120
]);

Requirements

  • PHP >= 5.6.0
  • ext-curl
  • ext-json

Complete Examples

See example files in the examples/ folder:

Tool Examples

Tool implementations can be found in examples/tools/:

Testing

Build the docker image and run tests:

docker build -t ollama-php56 .
docker run -it --rm \
    -e OPENAI_API_URL="http://localhost:11434/v1" \
    -e OLLAMA_API_URL="http://localhost:11434" \
    -e RUN_INTEGRATION_TESTS=1 \
    -e TEST_MODEL="llama3.2:1b" \
    ollama-php56

License

MIT

Contributions

Contributions are welcome! See CONTRIBUTING.md for guidelines.