bratao / prediction-io
Laravel PredictionIO Client
Requires
- php: >=5.3.0
- predictionio/predictionio: ~0.7
This package is not auto-updated.
Last update: 2024-11-19 02:32:17 UTC
README
Based on endroid
The Laravel PredictionIO library provides a client which offers easy access to a PredictionIO recommendation engine. PredictionIO is an open source machine learning server for software developers to create predictive features, such as personalization, recommendation and content discovery.
Through a small set of simple calls, all server functionality is exposed to your application. You can add users and items,
register actions between these users and items and retrieve recommendations deduced from this information by any
PredictionIO
recommendation engine. Applications range from showing recommended products in a
web shop to discovering relevant experts in a social collaboration network.
Installation
- Install library and dependencies:
$ composer require "bratao/prediction-io:1.*@dev"
- Add a provider in
app/config/app.php
:
'Bratao\PredictionIO\PredictionServiceProvider'
- Add an alias in
app/config/app.php
:
'Prediction' => 'Bratao\PredictionIO\Facade',
- Define your PredictionIO API endpoint in
app/config/services.php
:
'predictionio' => array( 'api' => 'http://localhost:8000/', 'key' => '0250b3f85ce33284f77c77f36b41010ef2c4fc5c', ),
Usage
<?php // populate with users, items and actions Prediction::createUser($userId); Prediction::createItem($itemId); Prediction::recordAction($userId, $itemId, 'view'); //Get a User or a Item $item = Prediction::getUser($userId); $user = Prediction::getItem($itemId); //Delete a user or a item Prediction::deleteUser($userId); Prediction::deleteItem($itemId); // get recommendations and similar items $recommendations = Prediction::getRecommendations($userId, $engine, $count); $similarItems = Prediction::getSimilarItems($itemId, $engine, $count);
License
This bundle is under the MIT license. For the full copyright and license information, please view the LICENSE file that was distributed with this source code.
Thanks to
- Braunson Yager
- Laurent Goussard