aldeebhasan / laravelcf
This package will allow you to make fast recommendation based on custom inputs
Requires
- php: >=8.1
- ext-json: *
Requires (Dev)
- orchestra/testbench: 8.x-dev
- phpunit/phpunit: ^9.6
This package is auto-updated.
Last update: 2025-01-14 16:38:05 UTC
README
A php package allow you to find the est recommendation of your modules
Installation
Install using composer:
composer require aldeebhasan/laravelcf
The run :
php artisan migrate
Basic Usage
LarvelCF package allow you to recommend data based on many algorithms including (Cosine,Weighted Cosine, Centered Cosine, SlopeOne).
In general we have two kind of recommender included in this package:
- item-based recommender
- user-based recommender
Filling the data
The first step to build your recommendation system is to provide the dataset you want to work with.
In LarvelCF we have 4 type of data (PURCHASE, RATE, CART_ACTION, BOOKMARK). the purpose of these types is to enable you to handle different types of data at the same time.
You can use the following to enter your recommender data:
use \Aldeebhasan\LaravelCF\Facades\Recommender; Recommender::addRating ('user_1', 'product_1', 5); Recommender::addCartAddition('user_1', 'product_1', 2); // like the quantity Recommender::addPurchase ('user_1', 'product_1', 5); // like the quantity Recommender::addBookmark ('user_1', 'product_1', 5);
Instantiate the recommender
After entering your data, you can instantiate your desired recommender using our support facade:
use \Aldeebhasan\LaravelCF\Facades\Recommender; use \Aldeebhasan\LaravelCF\Enums\RelationType; /* you cann also use any of RelationType::PURCHASE,RelationType::CART_ACTION,RelationType::BOOKMARK*/ Recommender::getItemBasedRecommender(RelationType::RATE); // to recommend similar products //OR Recommender::getUserBasedRecommender(RelationType::RATE);// to recommend similar users
Get recommendations
Finally, to make your recommendations you will run the following code:
use \Aldeebhasan\LaravelCF\Facades\Recommender; use \Aldeebhasan\LaravelCF\Enums\RelationType; /* you cann also use any of RelationType::PURCHASE,RelationType::CART_ACTION,RelationType::BOOKMARK*/ Recommender::getItemBasedRecommender(RelationType::RATE) ->setSimilarityFunction(Cosine::class) ->train() ->recommendTo('user_1');
For the setSimilarityFunction
, you can provide the similarity algorithm, the missing value default values, and weather you want to fill the missing
methods or discard them.
Available Similarity algorithm:
- Cosine::class (default for item-based)
- CosineCentered::class
- CosineWeighted::class
- Jaccard::class
- SlopeOne::class
- Pearson::class (default for user-based)
Available missing values replacement methods:
- MissingValue::ZERO (package default)
- MissingValue::MEAN
- MissingValue::MEDIAN
use \Aldeebhasan\LaravelCF\Facades\Recommender; use \Aldeebhasan\LaravelCF\Enums\RelationType; use \Aldeebhasan\LaravelCF\Enums\MissingValue; use \Aldeebhasan\LaravelCF\Similarity; Recommender::getItemBasedRecommender(RelationType::RATE) // use Weighted cosine algorithm and replace the missing values with zero ->setSimilarityFunction(CosineWeighted::class,MissingValue::ZERO,true) // use SlopeOne algorithm and replace the missing values with the mean ->setSimilarityFunction(SlopeOne::class,MissingValue::MEAN,true)
Full Example
use \Aldeebhasan\LaravelCF\Facades\Recommender; use \Aldeebhasan\LaravelCF\Enums\RelationType; use \Aldeebhasan\LaravelCF\Enums\MissingValue; use \Aldeebhasan\LaravelCF\Similarity; Recommender::addRating(1, 'squid', 1); Recommender::addRating(2, 'squid', 1); Recommender::addRating(3, 'squid', 0.2); Recommender::addRating(1, 'cuttlefish', 0.5); Recommender::addRating(3, 'cuttlefish', 0.4); Recommender::addRating(4, 'cuttlefish', 0.9); Recommender::addRating(1, 'octopus', 0.2); Recommender::addRating(2, 'octopus', 0.5); Recommender::addRating(3, 'octopus', 1); Recommender::addRating(4, 'octopus', 0.4); Recommender::addRating(1, 'nautilus', 0.2); Recommender::addRating(3, 'nautilus', 0.4); Recommender::addRating(4, 'nautilus', 0.5); $results = Recommender::getItemBasedRecommender(RelationType::RATE) ->setSimilarityFunction(CosineWeighted::class, MissingValue::MEAN) ->train() ->recommendTo('squid'); /** recommendation results sorted by similarity: [ "cuttlefish" => 0.89 "nautilus" => 0.75 "octopus" => 0.5 ] **/
License
Laravel Recommendation system package is licensed under The MIT License (MIT).
Security contact information
To report a security vulnerability, contact directly to the developer contact email Here.